10" Workshop “Software Engineering Education and Reverse
Engineering”, Ivanjica, Serbia, 5-12 September, 2010

Transforming Assembly to WSL, a
high-level language

Doni Pracner

Department of Mathematics and Informatics,
Faculty of Sciences, University of Novi Sad

= Introduction

= Software Evolution

= WSL

= Qur transformation process
= Asm2ws|

= Examples

= Conclusion

Introduction

= Old software can be very problematic for
maintenance

= Obsolete (or no) documentation
= Source code not available

= Old technologies

= |ncompatible hardware, etc.

= Qut aim is to make old, low level, assembly
code easier to understand, and hopefully
restructure it.

Software Aging

= Software does not degrade with time on its
own, the environment changes

= Two main types of aging (Parnas)

= Lack of Movement
= |Ignorant surgery

Software Evolution

= Software Evolution is the dynamic behavior of
programming systems as they are maintained
and enhanced over their life times.

= The life cycle of software

= Reengineering has 3 phases:
= Reverse engineering

= Functional restructuring
= Forward engineering

= Software Evolution is (largely) repeated
reengineering. 5

WSL - Wide Spectrum Language

= Developed by Martin Ward (since 1989)
= Strong mathematical core
= Formal transformations

= Wide spectrum: from abstract specifications to
low level program code

= MetaWSL — operations on WSL code

= Successfully used in migrating legacy assembly
code to maintainable C/COBOL code

= Implemented as Fermat program
transformation system

Our transformation process

= Two steps:

= Asm2wsl — translate the assembly code to WSL
= Trans.wsl — Automated transformations

= Possible manual transformations

= Main goal is to get a high level version of the
original program.

ASM2WSL

= Translates a subset of x86 assembly to WSL
= Mostly presumes 80286 for simplicity
= Implemented in Java

= Basically a line by line translator

= Focus is on translating all aspects, not
optimization (at this stage)

= \We work with a “virtual” processor

The “Processor”

= All processor registers are local variables

= Low and High parts of registers implemented with
additional operations

= Flags are variables too

= Overflow variable, needed for 8/16 bits
= Labels — Action system names

= Stack — a list

= Some special macros are recognized and
translated directly

= Procedures — nested Action systems (problems)

Asm2wsl usage

Assembler to WSL converter. v 0.78, 2010, by Donny
usage:

asm2wsl {-option[+-]} filename
options: (def value in parenthesis)

-oc : original code in comments (-)

-c . translate comments (+)

-dump : add memory dump commands to end (+)

10

Command translation

mov ax, dx ax ;= dx

add dx, ax overflow := 65536;
dx :=dx + ax;
IF dx >= overflow THEN
dx := dx MOD overflow ;
flag_o :=1; flag_c :=1;
ELSE
flag_o :=0; flag_c := 0;
Fl:

11

Command translation (contd.)

mov ah, n temp:=n;
ax ;= (ax MOD 256) +t e m_p * 256;

12

Special macro translation

Possible solution for handling input and output:

print_str x PRINT(x);
print_num x

13

Transformation

= Collapse Action Systems

= Transform DO ... OD loops
= Constant propagation

= Remove Redundant

14

Examples of translated programs

- GCD — greatest common divisor
- Array Sum — simple addition

- Factorial — artificial example, made to test the
many features of the translator (arrays, stack,
etc)

15

GCD - assembly

model small
.code
mov ax,12
mov bx,8
compare:
cmp ax,bx
je theend
ja greater
sub bx,ax
jmp compare
greater:
sub ax,bx
jmp compare
theend:
nop
end

16

GCD - translated

VAR <flag z:=0, flag c:=0 >: END
ACTIONS A S start: theend == CALL Z
A S start == END
Ax :=12; ENDACTIONS
Bx :=8; ENDVAR
CALL compare
END
compare ==

IF ax = bx THEN flag_z := 1 ELSE flag_z := 0 Fl;
IF ax < bx THEN flag_c := 1 ELSE flag_c := 0 Fl;
IF flag_z =1 THEN CALL theend Fl;
IF flag_z =0 AND flag ¢ =0 THEN CALL greater Fl;
IF bx = ax THEN flag_z := 1 ELSE flag_z := 0 FI;
IF bx <ax THEN flag_c := 1 ELSE flag_c := 0 Fl;
bx := bx - ax;
CALL compare;
CALL greater
END
greater ==
IF ax = bx THEN flag_z := 1 ELSE flag_z :=
IF ax < bx THEN flag_c := 1 ELSE flag_c :=
ax ;= ax - bx;
CALL compare; 17
CALL theend

0 FI;
0 FI;

GCD - remove flags

ACTIONS A S start:
A S start == ax :=12; bx := 8; CALL compare END
compare ==
IF ax = bx
THEN IF ax < bx THEN CALL theend ELSE
CALL theend FI
ELSE IF ax >= bx THEN CALL greater Fl Fl;
bx := bx - ax;
CALL compare;
CALL greater END
greater ==
ax := ax - bx; CALL compare; CALL theend END
theend == CALL Z END ENDACTIONS

18

GCD - collapse action system

ax = 12;
bx := 8;
DO IF ax = bx

THEN IF ax < bx THEN EXIT(1) ELSE EXIT(1) FI
ELSE IF ax >= bx THEN ax := ax - bx ELSE
bx := bx - ax Fl
FI OD

19

GCD - Floop to While

ax = 12;
bx := 8;
WHILE ax <> bx DO
|F ax >= bx THEN ax := ax - bx ELSE bx := bx - ax Fl
OD

20

GCD - diagram

(Start) theend
A S start | - g compare ' » greater Z

= Generated with FME (Fermat Maintenance
Environment) >

Array Sum - assembly

.data

array do 1,2,3,4,5,6,7,0

n dw 7

.code
mov dx, @data
mov ds, dx
mov bx, 0
mov ax, 0
mov dx, O

mainloop:
mov al, array[bx] ; read array member
cmp bx,n ; 1s it the n-th?
je progend ; 1T yes, go to end
add dx, ax ; the sum is in dx
inc bx
jmp mainloop

progend:
nop

end 22

Array Sum — Semantic slice

fl_flag1 := 0;
WHILE fl_flag1 =0 DO
IF bx =7

THEN fl_flag1 := 1
ELSIF array[bx + 1] + dx >= 65536
THEN dx := (array[bx + 1] + dx) MOD 65536;
<bx:=bx+1,fl flagl :=0>
ELSE dx := array[bx + 1] + dx;
<bx:=bx+1,fl flagl1:=0>FIOD

23

Transformation results

GCD Array Sum Factorial

Metric Before |After (% |Beforel|After (% Beforel|After %
McCabe 10 11 1+1016 V4 +16 |12 15 |25
Statements | 52 41 |22 |55 42 -24 199 77 |23
ICFDF 82 48 |42 |80 44 -45 |128 |82 |36
Nodes 302 (218 |28 |300 |213 |-29 |504 |[395 [-22
Structure |450 [291 |-36 |483 337 |-31 |787 |548 [|-31

24

Conclusion

= Interesting first results

= Automated transformations show more than 30%
improvement of code (weighted Structure metric)

= A lot of space for improvements

= More options in the assembler translation system
= More automatic transformations
= QOverall more examples

25

Thank you for your attention.

Questions?

26

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

